

Научный журнал для профессионалов агропромышленного комплекса

ISSN 2587-8824

Том: 25 Номер: 1 Год: 2018 Страницы: 37-44

УДК 631.55: 633.15(470.51/.54)

ПОДБОР ГИБРИДОВ КУКУРУЗЫ И ОПТИМАЛЬНЫЕ СРОКИ ИХ УБОРКИ НА СРЕДНЕМ УРАЛЕ

Н. Н. Зезин, М. А. Намятов, В. А. Пелевин

Дан анализ влияния сроков посева, уборки и гидротермических условий на силосную продуктивность и кормовую ценность зеленой массы различных по скороспелости гибридов кукурузы в условиях Среднего Урала. В благоприятные по погодным условиям годы с суммой положительных температур за период с мая по сентябрь 2400 °С гибриды кукурузы Кубанский 101 СВ и Обский 140 СВ достигали фазы молочно-вос-ковой спелости зерна уже к концу второй декады августа. В 2010 году к 19 августа доля зерна в урожае сухого вещества у гибрида Обский 140 СВ составила 29,2 % при посеве 15 мая, у гибрида Кубанский 101 CB - 30,9 % при посеве 25 мая. В менее благоприятные годы (2100-2200 ° С) качество кукурузной массы возрастало при перенесении сроков уборки с конца августа на вторуютретью декады сентября. У гибрида Кубанский 101 СВ в 2009-2011 годах содержание крахмала в сухом веществе составляло при уборке в конце августа – начале сентября 14–16%, в третьей декаде сентября 34– 38 %, у других гибридов, характеризую-щихся числами ФАО 130–170, соответственно 4–11 % и 19–31 %. Наибольший эффект от поздней уборки от-мечается в вариантах, где растения кукурузы к концу августа достигают фазы молочной спелости зерна. Так, в 2011 году уборка 23 августа при самом раннем посеве (5 мая) четырех гибридов с числами ФАО 120-170 обеспечила в среднем самое высокое содержание сухого вещества – 24,3 %, при позднем посеве (26 мая) – лишь 18,8 %; уборка 21 сентября способствовала увеличению содержания сухого вещества соответственно на 7,7 и 3,0 %, то есть до 32,0 и 21,8 %.

Ключевые слова: кукуруза, гибрид, сроки уборки, погода, сухое вещество, крахмал, урожайность.

Кукуруза в условиях Среднего Урала является основой кормовой базы молочного скотоводства. Современные достижения селекции на скороспелость позволили сместить северную границу возделывания кукурузы в регионе до подтаежной и горно-лесной зон [1–4], однако для выполнения требований к кормовой ценности силоса необходим обоснованный подбор гибридов, обеспечивающих оптимальную влажность силосуемой массы (70–75%) и концентрацию обменной энергии в сухом веществе от 10 до 11 МДж/кг [5, 6].

Динамика содержания влаги в растениях кукурузы в предуборочный период обусловле-

на в основном состоянием зерна, в то время как другие органы в этом отношении проявляют более или менее выраженную инертность [7, 8, 9]. Содержанием зерна, а следовательно, крахмала обусловлена и концентрация обменной энергии в растении, причем требуемые значения обоих параметров качества достигаются лишь при стабильном созревании растений до восковой спелости [6, 10].

Тезис о необходимости внедрения раннеспелых гибридов кукурузы в регионе был принят еще в 80-х годах XX столетия, однако последующие исследования показали, что этот класс гибридов отличается широким варьированием

по продолжительности вегетационного периода, и далеко не все формы обеспечивают необходимую динамику развития в условиях Урала [11]. Сказывается и значительное разнообразие гидротермических условий вегетации, связанное как с выраженной горизонтальной, так и с вертикальной зональностью [5]. Эти обстоятельства приводят к тому, что для подбора адаптированных гибридов необходимо их многолетнее изучение в конкретных почвенно-климатических условиях, позволяющее выявить экологическую реакцию на факторы среды.

Помимо скороспелости, необходимым признаком гибридов для Среднего Урала является холодостойкость, особенно в период прорастания семян. Это связано с тем, что даже при использовании форм с наиболее ранним цветением стабильное их созревание на фоне сильно колеблющейся по годам теплообеспеченности достигается лишь при посеве в ранние сроки в непрогретую почву [12, 13]. Резервы селекции кукурузы на холодостойкость обусловлены разнообразным генофондом этой культуры по широкому спектру признаков и выявлены в ходе одновременного испытания гибридов в двух географических зонах: на Северном Кавказе и Южном Урале на фоне сверхранних сроков посева [14, 15].

Учитывая, что основные параметры качества силоса формируются на заключительных стадиях развития растений, необходимо также обоснование оптимальных сроков уборки кукурузы на силос с учетом динамики ее химического состава и экстремального температурного фона в предуборочный период [1, 2, 5].

Материалы и методы

Исследования по подбору гибридов кукурузы и совершенствованию технологии их возделывания проводили в ФГБНУ «Уральский НИИСХ» в 2008–2017 гг.

Учет урожая проводился сплошным поделяночным методом. При уборке проводилось формирование пробного снопа из случайно отобранных растений, который в лабораторных условиях разделяли на початки на следующие фракции: початки без обертки, стебли с ножками початков, листья с обертками. Каждый образец взвешивался и сдавался в аналитическую лабораторию для определения следующих показателей: первоначальная, гигроскопическая влага и зола - гравиметрическим методом, сырой жир – методом экстракции, общий азот по Къельдалю, сырая клетчатка – удалением из продукта кислотощелочерастворимых веществ, сахар - эбулиостатическим, крахмал - поляриметрическим методом.

Погодные условия в годы исследований были различными (табл. 1). Благоприятными были 3 года (2010, 2012, 2016), которые отличались наиболее высокой суммой положительных температур за период с мая по сентябрь. Она оказалась больше средних многолетних значений в среднем на 17,6% (360 °C).

Результаты исследований

В первые два года (2008–2009 гг.) обеспеченность теплом оказалась на уровне среднемноголетней нормы, а осадков, особенно в 2008 г., было значительно больше.

Таблица 1 – Характеристика погодных условий перис	ода май-сентябрь, 2008–2017 гг.
(метеостанция «Исток»)	

Годы		Сумма положительных температур, °С	Сумма осадков, мм	ГТК
	2010	2355	270	1,15
Гиородинатуру	2012	2431	302	1,24
Благоприятные	2016	2420	197	0,81
	В среднем	2402	256	1,06
	2011	2205	281	1,27
Относительно благоприятные	2013	2233	274	1,22
	В среднем	2219	278	1,25
	2008	2111	386	1,83
	2009	2145	342	1,63
Γ	2014	2050	388	1,89
Близкие к средним многолетним	2015	2108	450	2,13
	2017	2130	329	1,54
	В среднем	2109	379	1,80
Средние многолетние значения		2042	320	1,57

В опытах 2008 г. установлено, что наибольший сбор сухого вещества (15,1 т/га) и его содержание в зеленой массе (21,2%) было у гибрида Машук 150 МВ. На втором месте по этим показателям был гибрид Катерина СВ – 14,6 т/га и 20,1%. Гибриды Машук 170 МВ, Машук 175 МВ, Машук 185 МВ уступали как по сбору сухого вещества, так и по его содержанию – соответственно 11,2; 9,4; 9,0 т/га и 15,9; 15,2; 14,6%.

В 2008 году посев был проведен 22 мая, уборка – 2 сентября, то есть период от посева до уборки составил 103 дня.

В 2009 году при посеве 22 мая уборку проводили в 3 срока (табл. 2). Сбор зеленой массы по изучаемым гибридам составил в среднем при первом сроке уборки 43,0 т/га, втором – 41,4 т/га, третьем – 34,1 т/га, сухого вещества – соответ-

ственно 7,8; 8,4; 8,0 т/га. Содержание сухого вещества возрастало от первого срока уборки (18,1%) до 20,3% при втором и 23,5% – при третьем.

Следует подчеркнуть, что у более скороспелых гибридов Кубанский 101 СВ, Омка 130 (ФАО 120–130) содержание сухого вещества увеличилось к третьему сроку уборки по сравнению с первым на 7,8–7,9%, а у гибридов Машук 150 МВ и Катерина СВ (ФАО 150–170) – на 2,9–4,1%.

Изучение химического состава растений кукурузы показало, что содержание крахмала и сахара у гибридов Омка 130 и Кубанский 101 СВ в листостебельной массе от первого к третьему сроку уборки резко снижалось. Содержание крахмала в початках возрастало, а сахара — снижалось (табл. 3).

Таблица 2 – Урожайность зеленой массы и сухого вещества различных гибридов кукурузы в зависимости от сроков уборки, 2009 г.

Показатель	Trifenius.	Срок уборки			
Показатель	Гибрид	01.09	15.09	30.09	
	Кубанский 101 СВ	34,4	40,0	30,2	
	Омка 130	40,0	36,0	32,2	
Урожайность зеленой массы, т/га	Машук 150 МВ	48,0	38,4	33,2	
	Катерина СВ	49,6	51,2	40,8	
	Среднее	43,0	41,4	34,1	
	Кубанский 101 СВ	16,1	17,9	24,0	
	Омка 130	18,4	23,9	26,2	
Содержание сухого вещества, %	Машук 150 МВ	19,4	22,3	22,3	
	Катерина СВ	18,2	18,1	22,3	
	Среднее	18,1	20,3	23,5	
	Кубанский 101 СВ	5,5	7,2	7,2	
Сбор сухого вещества, т/га	Омка 130	7,4	8,6	8,4	
	Машук 150 МВ	9,3	8,6	7,4	
	Катерина СВ	9,0	9,3	9,1	
	Среднее	7,8	8,4	8,0	

Таблица 3 – Изменение содержания сахара и крахмала в разных частях растений двух гибридов кукурузы (% в сухом веществе) в зависимости от сроков уборки (2009 год)

Губруг	Части растений	01.09		15.09		30.09	
Гибрид	кукурузы	крахмал	caxap	крахмал	caxap	крахмал	caxap
	лист	7,51	11,1	6,64	5,61	4,50	2,38
	стебель	9,90	50,8	6,81	28,8	4,76	8,22
Омка 130	обертка початка	10,46	33,8	5,73	25,1	4,62	12,1
OMKa 130	листостебельная масса	9,37	33,6	6,51	18,7	4,64	6,98
	початок	28,57	25,2	56,96	8,74	67,32*	4,12*
	вся надземная масса	15,22	31,0	24,00	15,2	27,35	5,93
	лист	9,16	13,4	5,99	5,96	2,98	7,95
	стебель	7,46	67,8	7,16	41,7	3,40	9,77
Vycourry 101 CD	обертка початка	12,82	40,4	5,69	19,9	3,67	9,07
Кубанский 101 СВ	листостебельная масса	9,74	42,5	6,40	24,5	3,32	8,96
	початок	24,71	25,0	42,37	11,8	69,91*	3,15*
	вся надземная масса	13,78	37,8	18,71	20,1	23,30	6,48

Примечание: * – зерно.

По данным Д. Шпаара и др. [6], к концу молочной спелости содержание крахмала в растениях кукурузы составляет 14%, сахара — 19%, к началу восковой спелости — соответственно 22 и 13%. В наших опытах при уборке первого, пятнадцатого и тридцатого сентября содержание крахмала у гибрида Кубанский 101 СВ во всей надземной массе равнялось 13,78; 18,71; 23,30%, у гибрида Омка 130 — 15,22; 24,00; 27,35%.

Таким образом, 2008—2009 годы показали, что наряду с подбором гибридов, для содержания сухого вещества в растениях и крахмала в сухом веществе огромное значение имеет и срок уборки кукурузы, удлиняющий вегетационный период, позволяющий увеличить концентрацию крахмала в початках в 1,7—1,8 раза.

В благоприятном 2010 году изучалось 36 гибридов кукурузы при посеве 16 мая и уборке 16 сентября. Лучшие показатели по содержанию в зеленой массе сухого вещества имели гибриды Кубанский 101 СВ (41,8%) и Обский 140 СВ (40,4%). У этих же гибридов отмечен наибольший удельный вес зерна в сухом веществе растений – соответственно 46,9 и 45,4%.

В 2010 году был проведен поисковый опыт по срокам посева (05.05; 15.05; 25.05) и уборки (19.08 и 07.09) четырех гибридов кукурузы.

Гибрид Кубанский 101 CB обеспечил сбор сухого вещества при уборке 19 августа

при всех изучаемых сроках посева 8,1-9,4 т/га с удельным весом зерна при посеве 5 мая 46,9%, 25 мая -30,9%, при уборке 7 сентября - соответственно 8,3-11,3 т/га и 52,0 и 42,2%.

У гибрида Обский 140 CB выход сухого вещества был наибольшим при посеве 15 мая, при уборке 19 августа он составил 13,4 т/га, 7 сентября — 16,0 т/га, с долей зерна в урожае сухого вещества 29,2 и 32,5%.

У гибридов Катерина СВ и Машук 150 МВ при ранней уборке доля зерна была максимальной только при раннем сроке посева (5 мая) — около 30%, содержание крахмала составило 20–22%. При уборке 7 сентября 2010 года доля зерна при всех сроках посева была высокой (30,5–45,1%), содержание крахмала при посеве 5 мая равнялось 38%, 15–25 мая – 24–30%.

У гибрида Обский 140 CB срок уборки оказал более значительное влияние на содержание и сбор крахмала, чем у гибрида Кубанский 101 CB. Так, среднее содержание крахмала в сухом веществе по изучаемым срокам посева равнялось у гибрида Кубанский 101 CB при уборке 19 августа 28,4%, 7 сентября — 33,7%, у гибрида Обский 140 CB — соответственно 18,3 и 28,4% (табл. 4). Если у гибрида Кубанский 101 CB (ФАО 120) выход крахмала возрос при более поздней уборке на 30,4%, то у более позднеспелого гибрида Обский 140 CB (ФАО 140) — на 72,5%. Аналогичным образом изменялись и со-

Таблица 4 — Содержание в сухом веществе и сбор крахмала и жира в зависимости от срока посева и уборки двух гибридов кукурузы, 2010 г.

Γ	C	Крах	кмал	Жир	
Гибрид	Срок посева	% в СВ	т/га	% в СВ	кг/га
		Уборка 19.0	8		
	05.05	35,0	2,83	3,60	291
Vygavayy 101 CD	15.05	27,1	2,49	3,22	297
Кубанский 101 СВ	25.05	24,2	2,28	3,19	300
	среднее	28,4	2,53	3,32	296
	05.05	32,9	2,78	2,78	320
060mm 140 CD	15.05	29,2	2,65	2,76	369
Обский 140 СВ	25.05	16,8	1,24	3,07	351
	среднее	18,3	2,22	2,87	347
		Уборка 07.0	9		
	05.05	40,4	3,36	4,13	343
Кубанский 101 СВ	15.05	30,1	2,95	4,12	404
Кубанский 101 СБ	25.05	31,7	3,59	3,67	414
	среднее	33,7	3,30	3,95	387
Обский 140 СВ	05.05	36,3	3,56	3,52	345
	15.05	28,8	4,61	3,04	486
	25.05	22,7	3,32	2,86	417
	среднее	28,4	3,83	3,08	416

держание, и сбор сырого жира с урожаем изучаемых гибридов кукурузы.

В менее благоприятном 2011 году у гибрида Кубанский 101 СВ при уборке в третьей декаде августа (23.08) доля початков в урожае сухого вещества была наибольшей при первых трех сроках посева (05.05; 12.05; 18.05) — 37,3—39,5%, содержание крахмала в сухом веществе было наибольшим среди изучаемых гибридов и достигало 14—16%, а у остальных гибридов (Катерина СВ, Обский 140 СВ, Машук 150 МВ) — 4—11%. При уборке в начале третьей декады сентября (21.09) содержание крахмала в сухом веществе было максимальным у гибрида Кубанский 101 СВ при первых трех сроках посева — 34—38%, а у других гибридов колебалось от 19 до 31%.

В другом опыте, проведенном в ФГБНУ «Уральский НИИСХ» в 2011 году (посев 14 мая), содержание крахмала также оказалось низким, а сахара — высоким при ранней уборке урожая (16 и 30 августа) (табл. 5).

При более поздней уборке (14 и 28 сентября) самое высокое содержание крахмала отме-

чено у гибридов Кубанский 101 СВ и Омка 130. У этих гибридов наблюдались максимальные темпы прироста концентрации крахмала в сухом веществе (1,1–1,2% в сутки) в период с 30 августа по 14 сентября. У гибрида Катерина СВ этот показатель равнялся 0,7.

Данные таблицы 6 показывают, что эффект от поздней уборки достигается в тех вариантах, в которых растения кукурузы к концу августа достигают как минимум фазы конца молочной спелости. Так, в вариантах с ранними сроками посева (05.05 и 12.05) уборка гибридов Катерина СВ, Кубанский 101 СВ, Обский 140 СВ, Машук 150 MB 23 августа обеспечила среднее содержание сухого вещества соответственно 24,3 и 22,2%. А уборка 21 сентября приводила к увеличению содержания сухого вещества в этих вариантах на 7,7 и 5,7%. В то же время, при более позднем посеве (18.05 и 26.05), содержание сухого вещества при уборке 21 сентября по сравнению с уборкой 23 августа возрастало лишь на 4 и 3%.

Таким образом, оптимизация сроков уборки раннеспелых гибридов кукурузы с ФАО

Таблица 5 – Содержание сахара и крахмала, % в сухом веществе, 2011 г.

Γσ	Дата учета						
Гибрид	16.08	30.08 14.09		28.09			
		Крахмал					
Катерина СВ	2,29	4,72	14,8	16,3			
Кубанский 101 СВ	6,54	12,4	28,7	28,5			
Омка 130	6,32	11,6	29,5	30,9			
Caxap							
Катерина СВ	25,7	27,1	8,7	11,0			
Кубанский 101 СВ	26,3	18,2	5,3	3,9			
Омка 130	29,9	16,9	2,3	5,3			

Таблица 6 – Урожайность зеленой массы и содержание сухого вещества при разных сроках посева и уборки гибридов кукурузы, 2011 г.

	Срок уборки		Сбор с 1 га, т		Содоржания
Группа гибридов		Срок посева	зеленой массы	СВ	Содержание СВ, %
Катерина СВ		05.05	46,1	11,2	24,3
Кубанский 101 СВ	22 opprvoma	12.05	49,9	11,1	22,2
Обский 140 СВ	23 августа	18.05	52,4	10,5	20,0
Машук 150 МВ		26.05	50,7	9,5	18,8
В среднем			49,8	10,6	21,3
Катерина СВ		05.05	39,4	12,6	32,0
Кубанский 101 СВ	21 2227775	12.05	43,6	12,2	27,9
Обский 140 СВ	21 сентября	18.05	47,3	11,4	24,0
Машук 150 MB		26.05	51,3	11,2	21,8
В среднем			45,4	11,8	26,0

120–150 в вариантах с ранними сроками посева (05.05–15.05) является важнейшим фактором рационального использования ресурсов тепла в условиях Среднего Урала.

Технологический минимум содержания сухого вещества в силосуемой массе составляет 25% (Н. Н. Зезин и др., 2017). В среднем за три года исследований этот минимум при выращивании гибридов Кубанский 101 СВ и Обский 140 СВ достигался в середине августа, а у более позднеспелых гибридов — Катерина СВ и Росс 140 СВ — почти на месяц позже (табл. 7).

В связи с тем, что наибольшим содержанием крахмала и жира отличаются початки, энергетическая ценность сухого вещества кукурузы определяется структурой урожая. По минимальным зоотехническим требованиям доля початков в урожае сухого вещества должна составлять не менее 50%. Из таблицы 7 видно, что у всех изучаемых гибридов удельный вес початков в сухом веществе возрастал при переносе сроков уборки с середины августа на конец сентября. При этом пропорционально доле початков изменялась и концентрация обменной энергии в сухом веществе. У гибридов Кубанский 101 СВ и Обский 140 СВ при втором и третьем сроках уборки (30.08 и 13.09) концентрация обменной энергии составила 10,1-10,4 МДж/кг сухого вещества и была наибольшей при уборке 28 сентября (10,4–10,5 МДж/кг СВ).

Результаты исследований при их внедрении в производство сказались на ассортименте

гибридов в Свердловской области. Так, если в 2011 году в область было поставлено семян гибрида Катерина СВ (ФАО 170) 95,4% от общего объема, то в 2013 г. – 62,8%, а в 2015 г. – 26,0%. Одновременно увеличилась поставка хорошо зарекомендовавшего в опытах и в производственных испытаниях гибрида Обский 140 СВ (ФАО 140): соответственно по годам 3,8; 34,5; 70,5%. В 2016 году на долю гибридов Обский 140 СВ, Кубанский 101 СВ, Росс 130 СВ приходилось 77,7; 10,9 и 11,4% семян [5].

В последние годы с началом массового внедрения «зерновой» технологии возделывания кукурузы по рекомендациям Уральского НИИСХ кукурузу на силос, а в последние 2–3 года – и на корнаж стали убирать во второй декаде сентября; более того, в отдельные годы (2010, 2012, 2016) и в отдельных хозяйствах стала возможна уборка и на зерно в конце сентября – начале октября.

2017 год отличался холодным летом, наблюдалась задержка в росте и развитии кукурузы, однако очень теплая погода во второй половине августа резко ускорила созревание растений, что еще раз говорит о необходимости «накопления тепла» за вегетационный период всеми возможными способами: подбор участка под кукурузу, выбор оптимальных сроков посева и уборки, соблюдение мельчайших деталей в технологии возделывания, способствующих быстрому росту и развитию растений.

На этом фоне в пяти хозяйствах Свердловской области (ООО «Новопышминское»,

Таблица 7 – Влияние срока уборки на содержание сухого вещества в зеленой массе, на долю початков и концентрацию обменной энергии в сухом веществе различных по скороспелости гибридов кукурузы, 2011–2013 гг.

Even.		Срок у	лборки				
Гибрид	16.08	30.08	13.09	28.09			
	Содержани	ие СВ в зеленой масс	ce, %				
Кубанский 101 СВ	29,6	34,3	38,7	45,4			
Обский 140 СВ	25,6	28,4	32,6	39,9			
Катерина СВ	22,3	24,4	29,1	34,7			
Pocc 140 CB	20,1	22,3	27,0	32,9			
	Доля	я початков в СВ, %					
Кубанский 101 СВ	47,2	55,1	63,1	66,1			
Обский 140 СВ	38,9	48,2	59,1	62,7			
Катерина СВ	30,4	39,4	53,7	59,4			
Pocc 140 CB	25,5	35,0	50,3	56,3			
	Концентрация ОЭ в СВ, МДж/кг						
Кубанский 101 СВ	10,2	10,3	10,4	10,5			
Обский 140 СВ	10,1	10,2	10,3	10,4			
Катерина СВ	9,9	10,1	10,2	10,3			
Pocc 140 CB	9,6	9,8	10,0	10,1			

СПК «Калининский», ООО «Дерней», колхоз им. Свердлова, СПК «Килачевский») по двум гибридам (Обский 140 СВ и Росс 130 СВ) был проведен анализ химического состава початков кукурузы по состоянию на 16 сентября. У гибрида Обский 140 СВ содержание сухого вещества составило 29,8–32,9%, жира и крахмала в сухом веществе 2,91–3,17% и 37,0–44,7%, у гибрида Росс 130 СВ эти показатели были выше – соответственно 36,3–41,7%; 3,38–4,12%; 44,5–50,2%; у гибрида Кубанский 101 СВ (в одном хозяйстве) – 42,7%/4,65%; 42,7%.

Выводы

- 1. В благоприятные по погодным условиям годы (2010, 2012, 2016) сумма положительных температур за период май-сентябрь превысила средние многолетние значения в среднем на 17,6% (360 °C). В эти годы многие изучаемые гибриды уже к 1 сентября достигали фазы молочно-восковой спелости зерна. Так, при уборке 19 августа 2010 г. гибрид Кубанский 101 СВ обеспечил сбор сухого вещества 8,1–9,4 т/га с удельным весом зерна 30,9% даже при посеве 25 мая. У гибрида Обский 140 СВ выход сухого вещества достигал 13,4 т/га с долей зерна 29,2% при посеве 15 мая.
- 2. В менее благоприятные годы с суммой положительных температур в период май-сентябрь 2100–2200 °С значительное влияние на показатели качества кукурузной массы оказали сроки уборки гибридов. Так, в 2009 году у гибридов Кубанский 101 СВ, Омка 130 содержание крахмала в сухом веществе возрастало с 13,78–15,22% при уборке 1 сентября, до 18,71–24,0% при втором (15 сентября) и до 23,30–27,35% при третьем сроке уборки (30 сентября).
- 3. Наибольший эффект от поздней уборки наблюдается в тех вариантах, где растения кукурузы к концу августа достигают как минимум фазы конца молочной спелости зерна. Так, в 2011 году при ранних сроках посева уборка четырех гибридов с ФАО 120–170 23 августа обеспечила среднее содержание сухого вещества соответственно 24,3 и 22,2%; уборка 21 сентября приводила к увеличению содержания сухого вещества на 7,7 и 5,7%; при позднем посеве (18.05 и 26.05) только на 4 и 3%.
- 4. Экологическое испытание и производственное испытание гибридов кукурузы в различные по погодным условиям годы позволили выявить преимущества гибридов с ФАО 120–140 и изменить ассортимент поставляемых в область гибридов в их пользу. Если в 2011 г.

в область поступало семян гибрида Катерина СВ (ФАО 170) 95,4% от общего объема посевных площадей, то в 2015 г. – 26%, гибрида Обский 140 СВ (ФАО 140) соответственно 3,8% и 70,5%. В 2016 г. в области преимущественно возделывались гибриды Обский 140 СВ (70%), Росс 130 СВ и Кубанский 101 СВ.

5. В 2017 году, близкому по погодным условиям к средним многолетним значениям, изучение химического состава растений кукурузы в 5 хозяйствах области на момент уборки (16 сентября) показало преимущество гибрида Росс 130 СВ над гибридом Обский 140 СВ по содержанию сухого вещества в початках, жира и крахмала в сухом веществе.

Список литературы

- 1. Итоги и перспективы возделывания кукурузы на силос в Свердловской области / Н. Н. Зезин [и др.] // Нива Урала. 2012. № 7–8. С. 2–4.
- 2. Особенности возделывания раннеспелых гибридов кукурузы на Урале / Н. Н. Зезин [и др.]. Екатеринбург, 2012. 54 с.
- 3. Казакова Н. И. Дифференциация апикальных меристем ультрараннего и раннеспелого гибридов кукурузы в лесостепи Южного Зауралья // Кукуруза и сорго. 2011. № 4. С. 31–33.
- 4. Еремин Д. И., Демин Е. А. Агроэкологическое обоснование выращивания кукурузы на зерно в условиях лесостепной зоны Зауралья // Вестник Государственного аграрного университета Северного Зауралья. 2016. № 1 (32). С. 6–11.
- 5. Кукуруза на Урале: монография / Н. Н. Зезин [и др.]; под общ. ред. Н. Н. Зезина, А. Э. Панфилова. Екатеринбург: Уральское изд-во; ФГБНУ «Уральский НИИСХ», 2017. 204 с.
- 6. Кукуруза (выращивание, уборка, консервирование и использование) / Д. Шпаар [и др.]; под общ. ред. Д. Шпаара. М.: ИД ООО «ДУН Агродело», 2009. 390 с.
- 7. Казакова Н. И. Органогенез и продукционный процесс ультрараннего и раннеспелого гибридов в связи со сроками посева в северной лесостепи Зауралья : автореф. дис. ... канд. с.-х. наук. Пермь, 2012. 8 с.
- 8. Панфилов А. Э., Иванова Е. С. Динамика влажности зерна кукурузы в связи с гидротермическими условиями // Известия Челябинского научного центра УрО РАН. 2008. № 1. С. 87.
- 9. Иванова Е. С., Панфилов А. Э. Динамика влажности зерна кукурузы как функция погодных условий // Кукуруза и сорго. 2013. № 3. С. 7–11.

- 10. Перспективы и проблемы выращивания зерновой кукурузы в засушливом Зауралье / С. Д. Гилев [и др.] // Кукуруза и сорго. 2014. № 2. С. 3–7.
- 11. Панфилов А. Э. Продуктивный потенциал кукурузы и факторы его реализации в лесостепи Южного Зауралья : дис. ... д-ра с.-х. наук. Челябинск, 2005. 352 с.
- 12. Казакова Н. И. Оценка качества силоса в зависимости от скороспелости гибридов кукурузы и срока посева // Вестник ЧГАА. 2012. Т. 62. С. 92–95.
- 13. Продуктивность гибридов кукурузы в зависимости от густоты и срока посева в ус-

- ловиях Среднего Урала / С. К. Мингалев [и др.] // Нива Урала. 2008. № 1. С. 6–7.
- 14. Реакция гибридов кукурузы на температурный режим в период прорастания / А. Г. Горбачева, И. А. Ветошкина, А. Э. Панфилов, Е. С. Иванова // Кукуруза и сорго. 2014. № 2. С. 20–24.
- 15. Экологическая оценка гибридов кукурузы в период прорастания при раннем и оптимальном сроках посева / А. Г. Горбачева, И. А. Ветошкина, А. Э. Панфилов, Е. С. Иванова // Кукуруза и сорго. 2015. Т. 1. № 2. С. 3–10.

Зезин Никита Николаевич, д-р с.-х. наук, директор, ФГБНУ «Челябинский НИИСХ». E-mail: nikitazezin@yandex.ru.

Намятов Михаил Александрович, канд. с.-х. наук, научный сотрудник отдела земледелия и кормопроизводства, ФГБНУ «Челябинский НИИСХ».

E-mail: info@agroecology.ru.

Пелевин Владимир Александрович, научный сотрудник отдела земледелия и кормопроизводства, ФГБНУ «Челябинский НИИСХ».

E-mail: pelevin-pva@mail.ru.