Министерство сельского хозяйства Российской Федерации Департамент научно-технологической политики и образования Федеральное государственное бюджетное образовательное учреждение высшего образования «Южно-Уральский государственный аграрный университет»

ПРОБЛЕМЫ АГРАРНОГО СЕКТОРА ЮЖНОГО УРАЛА И ПУТИ ИХ РЕШЕНИЯ

Материалы Международной научно-практической конференции Института агроэкологии (Миасское, 2018)

Челябинск 2018

Реакция гибридов кукурузы на абиотические факторы среды в фазу прорастания и всходов

Н. И. Казакова

Для северной зоны кукурузосеяния важнейшим адаптационным признаком гибридов кукурузы наряду со скороспелостью является холодостой-кость. Низкотемпературный стресс для кукурузы наиболее вероятен в период прорастания семян и в фазе всходов, при этом негативное воздействие на этот процесс могут оказывать как температуры охлаждения, так и субоптимальные температуры. Для оценки потенциала холодостойкости гибридов кукурузы сахарной, зубовидной и кремнистой форм в 2014–2015 гг. на опытном поле Института агроэкологии (северная лесостепь Челябинской области) изучена их реакция на абиотические факторы среды при контрастных сроках посева. Установлена достоверно высокая полевая всхожесть у гибрида Обский 140СВ. Гибрид Кубанский 101СВ показал меньшую холодостойкость, что можно рассматривать как частную характеристику данного гибрида, а не класса в целом. Наибольшую устойчивость к неблагоприятным условиям периода прорастания среди гибридов сахарной кукурузы показали Кубанский Биколор и Птичье молоко.

Ключевые слова: кукуруза, гибрид, скороспелость, абиотические факторы, полевая всхожесть, срок посева, Зауралье.

Для получения высококачественных кормов необходим подбор сортов и гибридов сельскохозяйственных культур, способных реали-

зовать свой продуктивный потенциал в условиях северной лесостепи Зауралья [1, 2, 3, 4, 5]. Резкая континентальность климата ставит вопрос об оптимальных уровнях скороспелости гибридов для различных направлений использования. В вопросе о выборе гибридов важна экологическая составляющая, связанная со значительными различиями их реакции на абиотические факторы среды, а также с резкими колебаниями гидротермических условий по годам [6, 7, 8, 9, 10].

Сравнительно короткий период активной вегетации в северной лесостепи Зауралья требует максимально рационального использования ресурсов тепла кукурузным растением. Возвраты холодного воздуха поздней весной и в июне — для умеренных широт явление не такое уж и редкое. Как правило, такие похолодания связаны с вторжением холодного арктического воздуха с северным или северо-восточным ветрами. Возвраты холодов могут быть различной интенсивности и продолжительности.

Анализ погодных условий 2005–2015 гг. показывает, что заморозки отмечались в 100% случаев в первой декаде и в 63,4% во II и III декадах мая (табл. 1).

Таблица 1 – Погодные условия весеннего периода вегетации кукурузы в северной лесостепи Зауралья, 2005–2015 гг.

	Месяц, декада				
Год		июнь			
	I дек.	II дек.	III дек.	I дек.	
1	2	3	4	5	
2015	$\frac{-1,9}{9,9}$	<u>-0,6</u> 11,2	<u>-0,8</u> 16,1	7 <u>,0</u> 18,4	
2014	-1.9 9.9 -3.3 12.2 -3.0 9.5 -2.8 9.1	<u>-1,1</u> 16,8	<u>-0,8</u> 16,1 <u>-1,2</u> 14,8	7.0 18,4 -0.3 15,8 -0.2 12,4 5.3 19,2	
2013	<u>-3,0</u> 9,5	$\frac{-2,4}{10,7}$	<u>0,8</u> 15,0	<u>-0,2</u> 12,4	
2012	<u>-2,8</u> 9,1	$\frac{-1,9}{15,3}$	$\frac{-2,1}{17,1}$	<u>5,3</u> 19,2	
2011	$\frac{-1.7}{12.4}$	$\frac{-5,1}{10,0}$	$\frac{-1,7}{13,6}$	11,6 17,4	
2010	-1,7 12,4 -2,6 15,0	<u>-1,8</u> 13,3	<u>-4,0</u> 13,9	12,5 16,5	
2009	$\frac{-1,4}{9,5}$	<u>1,6</u> 12,9	$\frac{-4,4}{12,8}$	10,8 19,4	

Окончание таблицы 1

1	2	3	4	5
2008	<u>-5,6</u>	<u>1,8</u>	<u>-2,1</u>	<u>5,5</u>
	8,4	15,5	12,1	10,9
2007	$\frac{-1,2}{7,6}$	<u>0,7</u> 12,3	<u>4,2</u> 17,2	<u>-0,9</u> 9,8
2006	<u>-5,3</u>	<u>-2,4</u>	4,4	13,1
	8,5	12,5	16,4	19,6
2005	$\frac{-1.0}{9.9}$	1,0 18,4	3 <u>,0</u> 15,0	10,4 16,5
2005–2015 гг.	100 %	63,6%	63,6 <u>%</u>	27,3 %
	10,2	13,5	14,9	16,0

^{*}В числителе – минимальная температура за период, в знаменателе – средняя температура за период.

Дата последних заморозков приходится на начало июня и повторяется в отдельные годы в 27,3 % случаев. Кроме того, в отдельные годы в первой половине мая температура может опускаться до минус 5,1–5,6 °C. В период прорастания семян кратковременные низкие температуры не наносят существенного ущерба. Заморозки в 2–3 °C в конце мая — начале июня приводят к различной степени повреждениям листьев растений кукурузы. Однако повреждения на начальных этапах роста и развития культуры не сопровождаются гибелью растений, так как конус нарастания находится в почве или над ее поверхностью и скрыт в пазухах листьев [7]. Исходя из этого ограничения, на Южном Урале заморозки не представляют реальной опасности при посеве в первой половине мая [9].

Среднесуточная температура воздуха в І декаде мая опускается ниже биологического минимума в 73% случаев. Однако целесообразно проводить посев в ранние сроки, что позволяет эффективно использовать весенние запасы почвенной влаги растениями кукурузы, а также появляются дополнительные 100–150 градусов активных температур, которые необходимо рассматривать как один из главных факторов реализации продуктивного потенциала кукурузы в северной лесостепи Зауралья. При этом наиболее важна устойчивость гибридов кукурузы к температурам охлаждения (ниже биологического минимума) как условие получения полноценных всходов, а также к субоптимальным температурам (ниже биологического оптимума),

обеспечивающие высокие темпы стартового роста и стабильное развитие растений [6].

В 2014—2015 годах на опытном поле Института агроэкологии (северная лесостепь Челябинской области) изучена реакция на абиотические факторы среды в фазу прорастания и всходов гибридов кукурузы различных форм: сахарной, кремнистой и зубовидной. Разнообразие условий для гибридов кормового назначения ультрараннего Кубанский 101СВ (зубовидный) и раннеспелого Обский 140СВ (кремнистый) создавалось с помощью пяти сроков посева с 5 по 25 мая с интервалом 5 суток. Гибриды пищевого назначения высевались в середине мая. В опыт были включены гибриды сахарной кукурузы различной скороспелости (ФАО 150-250) отечественной селекции. Агротехника в опытах состояла из комплекса мероприятий по выращиванию фуражной кукурузы, которая достаточно детально отработана для северной лесостепи Зауралья [11, 12, 13, 14, 15, 16, 17, 18].

Динамика развития растений кукурузы в период «посев – всходы» не определялась особенностью гибридов, а находилась в тесной зависимости от погодных условий, обусловленных сроками посева. Ранний срок посева создавал более жесткие условия для прорастания семян. В 2014 году при ранних сроках посева появление всходов было отмечено через 12 дней после посева, что связано с благоприятным температурным режимом на фоне умеренного увлажнения почвы в начале вегетации (табл. 2).

Таблица 2 – Продолжительность периода «посев – всходы» и даты появления всходов зубовидного и кремнистого гибридов кукурузы в зависимости от сроков посева, 2014 г.

Срок	Дата	Период «посев –	Средняя температура	Количество
посева	всходов	всходы», суток	почвы, °С	осадков, мм
06.05	18.05	12	13,2	21,2
11.05	23.05	12	12,9	19,5
15.05	25.05	10	14,3	19,5
21.05	28.05	7	16,7	0,8
26.05	01.06	6	12,3	0,0
Среднее	_	9	14,0	12,2

Медленное прогревание почвы на фоне избыточного увлажнения в мае 2015 года удлинило период «посев – всходы» в среднем на 6 суток (табл. 3).

Таблица 3 – Продолжительность периода «посев – всходы» и даты появления всходов зубовидного и кремнистого гибридов кукурузы в зависимости от сроков посева, 2015 г.

Срок	Дата	Период «посев –	Средняя температура	Количество
посева	всходов	всходы», суток	почвы, °С	осадков, мм
05.05	26.05	21	10,4	150,9
11.05	28.05	17	12,2	75,6
15.05	30.05	15	13,5	84,0
20.05	01.06	12	15,6	19,0
25.05	03.06	9	19,2	8,4
Среднее	_	15	14,2	67,6

Наиболее четко это прослеживается при первом сроке посева, когда средняя температура была близка к биологическому минимуму. Продолжительность указанного периода превысила 20 суток. Несмотря на удлинение периода прорастания, ранний срок посева способствовал появлению полных всходов на 14 дней раньше.

Появление всходов у гибридов кукурузы пищевого назначения отмечалось на 10-й и 15-й день после посева (табл. 4). Продолжительность периода «посев — всходы» составил в среднем 13 суток и по датам наступления мало отличался от гибридов кормового направления использования.

Таблица 4 – Продолжительность периода «посев – всходы» и даты появления всходов гибридов сахарной кукурузы в зависимости от сроков посева, 2014–2015 гг.

Год	Срок посева	Дата всходов	Период «посев – всходы», суток	Средняя температура почвы, °С	Количество осадков, мм
2014	16.05	26.05	10	15,7	19,5
2015	15.05	30.05	15	13,6	84,0
2014–2015	_	_	13	14,7	51,8

Надежным показателем холодостойкости гибридов кукурузы может служить высокая полевая всхожесть семян на фоне пониженных температур (табл. 5, 6).

Таблица 5 — Полевая всхожесть зубовидного и кремнистого гибридов кукурузы, % (2014—2015 гг.)

Гибрид	Срок посева	2014 г.	2015 г.	В среднем
	5-6.05	79,3	67,7	73,5
	11.05	89,4	67,2	78,3
Кубанский 101СВ	15.05	89,9	75,3	82,6
	20-21.05	80,8	78,8	79,8
	25-26.05	85,4	85,9	85,7
	5-6.05	87,4	73,7	80,6
	11.05	83,8	70,7	77,3
Обский 140СВ	15.05	90,4	80,8	85,6
	20-21.05	89,4	82,8	86,1
	25-26.05	84,8	84,8	84,8
	по годам	_	_	2,6
HCP ₀₅	по срокам	$F_{\phi} < F_{05}$	6,4	4,1
	по гибридам	$F_{\phi} < F_{05}$	2,1	2,6

Таблица 6 — Полевая всхожесть гибридов сахарной кукурузы, % (2014—2015 гг.)

№ п/п	Гибрид	2014 г.	2015 г.	В среднем
1	Белая ночь	77,3	29,8	53,6
2	Птичье молоко	_	65,2	_
3	Сахарная ранняя	64,6	26,3	45,5
4	Ранняя лакомка	69,2	18,7	44,0
5	Лакомка	65,7	29,8	47,8
6	Кубанский Биколор	85,9	50,5	68,2
7	Услада	84,3	36,4	60,4
8	Леденец	59,6	24,7	42,2
9	Краснодарский сахарный	76,3	8,6	42,5
10	Алина	_	17,2	_
HCP ₀₅	по годам по гибридам	- 10,8	- 12,4	3,7 7,4

В этом отношении наиболее показательны данные 2015 года, неблагоприятного по теплообеспеченности в период прорастания. В этих условиях наблюдалась дифференциация гибридов по полевой всхожести. Преимущество по данному показателю независимо от срока посева обеспечил кремнистый гибрид кукурузы. Меньшую холодостойкость показал зубовидный гибрид, у которого при ранних сроках посева отмечается низкий процент всхожести. Поздние сроки показали более высокую полевую всхожесть, следовательно, обнаруженные особенности связаны именно с реакцией гибрида на температуру, а не с качеством семян. В 2014 году на фоне благоприятных погодных условий достоверных различий по данному показателю не обнаружено.

Изреженность посевов говорит о слабой холодостойкости гибрида Кубанского 101СВ, которая является частной характеристикой данного гибрида и не может рассматриваться как недостаток класса в целом, что подтверждает результаты исследований, полученных в 2007–2009 годах [6].

Длительное влияние низких температур на биологические процессы пищевой кукурузы, особенно при высокой влажности почвы, привели к плохому прорастанию семян. Результат действия низких температур на семена и проростки в каждом конкретном случае определялся холодостойкостью гибрида. Полевая всхожесть в 2014 году варьировала от 86% у гибрида Кубанский Биколор до 60% у гибрида Леденец. В 2015 году произошло существенное снижение данного показателя независимо от скороспелости гибрида. Наиболее устойчивым к неблагоприятным условиям периода прорастания оказался гибрид Кубанский Биколор, у которого полевая всхожесть в среднем за два года составила 68,2%. Гибрид Птичье молоко, который испытывался в 2015 году впервые, показал наилучший результат — 65,2%.

Таким образом, высокие требования кукурузы к ресурсам тепла не исключают ранние сроки посева, а, напротив, делают актуальными исследования по их эффективности. Представленные данные говорят о широком варьировании генофонда кукурузы по реакции на пониженную температуру, что создает предпосылки для результативной селекции кукурузы на холодостойкость.

Список литературы

- 1. Грязнов А. А., Кущева О. В. Голозерный ячмень в кормлении свиней // Вопросы нормативно-правового регулирования в ветеринарии. 2015. № 2. С. 289–291.
- 2. Ваулин А. Ю. Сортоиспытание сои на Южном Урале // Вестник Алтайского государственного аграрного университета. 2012. № 8 (94). С. 11–14.
- 3. Перспективы и проблемы выращивания зерновой кукурузы в засушливом Зауралье / С. Д. Гилев [и др.] // Кукуруза и сорго. 2014. № 2. С. 3–7.
- 4. Еремин Д. И., Демин Е. А. Агроэкологическое обоснование выращивания кукурузы на зерно в условиях лесостепной зоны Зауралья // Вестник Государственного аграрного университета Северного Зауралья. 2016. № 1 (32). С. 6–11.
- 5. Влияние технологии закладки кукурузного силоса на показатели его качества / А. А. Калганов [и др.] // Современные тенденции в образовании и науке : сб. науч. тр. по матер. Междунар. науч. практ. конф. : в 14 частях. 2014. С. 68–70.
- 6. Кукуруза на Урале : монография / Н. Н. Зезин [и др.]. Екатеринбург, 2017. 204 с.
- 7. Казакова Н. И. Органогенез и продукционный процесс ультрараннего и раннеспелого гибридов кукурузы в связи со сроками посева в северной лесостепи Зауралья : дис. ... канд. с.-х. наук / Пермская государственная сельскохозяйственная академия им. Д. Н. Прянишникова. Челябинск, 2012. 164 с.
- 8. Экологическая оценка гибридов кукурузы в период прорастания при раннем и оптимальном сроках посева / А. Г. Горбачева, И. А. Ветошкина, А. Э. Панфилов, Е. С. Иванова // Кукуруза и сорго. 2015. Т. 1. № 2. С. 3–10.
- 9. Захарова Е. А., Линиченко Д. С. Оценка текущего и стратегического эффекта в системе агропромышленной интеграции с участием предприятий кормопроизводства // Аграрный вестник Урала. 2016. № 1 (143). С. 82–86.
- 10. Захарова Е. А., Линиченко Д. С. Мелиорация земель в системе управления развитием агропредприятий // Экономика сельского хозяйства России. 2015. № 6. С. 71–77.

- 11. Реакция гибридов кукурузы на температурный режим в период прорастания / А. Г. Горбачева, И. А. Ветошкина, А. Э. Панфилов, Е. С. Иванова // Кукуруза и сорго. 2014. № 2. С. 20–24.
- 12. Пестрикова Е. С. Разработка нормативной базы потребления элементов питания зерновой кукурузы в Зауралье // Кукуруза и сорго. 2016. $N\!\!\!_{2}$ 1. С. 6–10.
- 13. Уфимцева Л. В., Покатилова А. Н., Казакова Н. И. Особенности потребления минеральных форм азота разновременно созревающими гибридами кукурузы под воздействием комплекса внешних факторов // Материалы XLIX Междунар. науч.-техн. конф. «Достижения науки агропромышленному производству». Челябинск, 2010. С. 309–315.
- 14. Доронина О. М. Влияние степени засоренности на продуктивность яровой пшеницы, кукурузы и подсолнечника // АПК России. 2017. Т. 24. № 2. С. 289–294.
- 15. Влияние графитосодержащих продуктов на полевую всхожесть семян и урожайность яровой пшеницы и кукурузы / А. А. Шабунин, О. С. Батраева, С. М. Красножон, Н. А. Теличкина // Сельскохозяйственные науки агропромышленному комплексу России : матер. Междунар. науч.-практ. конференции. Челябинск : ФГБОУ ВО Южно-Уральский ГАУ, 2017. С. 142–147.
- 16. Зерновая продуктивность гибридов кукурузы как функция географических пунктов, сроков посева и длительности хранения семян / В. С. Сотченко [и др.] // АПК России. 2016. Т. 23. № 3. С. 687–694.
- 17. Интенсивная технология возделывания кукурузы для производства высокоэнергетических кормов / А. Э. Панфилов, Е. С. Иванова, Н. И. Казакова, Е. С. Пестрикова // Научные проекты Южно-Уральского государственного аграрного университета / под ред. М. Ф. Юдина. Челябинск, 2016. С. 87–89.
- 18. Панфилов А. Э., Цымбаленко И. Н., Синицына О. Б. Почвенные и листовые гербициды как альтернативные элементы технологии возделывания кукурузы // Вестник ЧГАА. 2012. Т. 62. С. 106–110.

Казакова Наталья Ивановна, канд. с.-х. наук, доцент кафедры агротехнологии, селекции и семеноводства, ФГБОУ ВО Южно-Уральский ГАУ, Институт агроэкологии – филиал.

E-mail: kni1711@yandex.ru.

. .