Министерство сельского хозяйства Российской Федерации Департамент научно-технологической политики и образования Федеральное государственное бюджетное образовательное учреждение высшего образования «Южно-Уральский государственный аграрный университет»

ПРОБЛЕМЫ АГРАРНОГО СЕКТОРА ЮЖНОГО УРАЛА И ПУТИ ИХ РЕШЕНИЯ

Материалы Международной научно-практической конференции Института агроэкологии (Миасское, 2018)

Челябинск 2018

Сравнительная эффективность возделывания гибридов кукурузы отечественной и зарубежной селекции в условиях Зауралья

Е. С. Иванова

Ежегодно возрастающие потребности животноводства в фуражном зерне привели к необходимости увеличения урожайности кукурузы и расширения под ней посевных площадей. Решение этой задачи зависит от наличия у сельхозпроизводителей гибридов кукурузы, адаптированных к условиям регионов с дефицитом тепла в течение вегетации, к которым относится Зауралье. Селекционеры многих стран ведут активную работу в этом направлении, создавая гибриды кукурузы с хозяйственно ценными признаками. Широкий сортимент этих гибридов привел к необходимости изучения эффективности возделывания гибридов отечественной и зарубежной селекции в условиях Зауралья. Для достижения поставленной цели в 2014–2017 гг. был проведен полевой опыт, который включал 16 гибридов (9 российской селекции, 7 – зарубежной). В результате исследований выявлено, что гибриды отечественной селекции имеют преимущества перед зарубежными гибридами за счет своей ранней скороспелости (преобладают ультраранние и раннеспелые формы), более высокой зерновой продуктивности (до 9,5 т/га), низкой уборочной влажности (ниже 35%), а также за счет более доступных цен на семенной материал. Зарубежные гибриды, являясь более позднеспелыми, обладают потенциально высокой биологической продуктивностью, но в условиях ограниченной теплообеспеченности не могут в полной мере реализовать свой потенциал. Они дают урожай зерна с высокой уборочной влажностью, которая исключает его механизированную уборку и дает возможность возделывать эти гибриды только на силос.

Ключевые слова: кукуруза, гибрид, селекция, скороспелость, продуктивность, Зауралье.

С развитием животноводства в России спрос на кукурузные силос и зерно непрерывно растет, поэтому посевные площади под кукурузой постоянно увеличиваются, продвигаясь в более северные регионы страны (Урал, Сибирь и др.). В условиях короткого вегетационного периода и на фоне дефицита тепла имеющиеся у сельхозпроизводителей гибриды не могут в полной мере реализовать свой биологический потенциал, что существенно снижает эффективность производства кормов из кукурузы [1, 2, 3]. Учитывая это, ученые многих стран большое внимание уделяют созданию гибридов, соответствующих разнообразным целям и условиям произрастания. В России селекцией кукурузы занимаются более 15 научно-исследовательских учреждений: Всероссийский научно-исследовательский институт кукурузы (ВНИИК), Краснодарский НИИСХ им. П. П. Лукьяненко, НПО «Семеноводство Кубани», НПО «КОС-Маис» и др. [3, 4, 5, 6, 7, 8]; а за рубежом – PIONER (США), LIMAGRAIN «LG» и Euralis (Франция), KWS (ФРГ), Syngenta (Швейцария) и др. [1, 3, 8, 9].

При анализе динамики подачи новых заявок на государственные испытания кукурузы и включение гибридов в Государственный реестр селекционных достижений последнее десятилетие отмечается увеличение их общего количества, прежде всего за счет иностранных производителей (их доля составляет более 80% от общего количества заявок) [10, 11]. Таким образом, в условиях широкого сортимента гибридов возникают вопросы: 1) являются ли современные отечественные гибриды конкурентоспособными по отношению к зарубежным? и 2) каким гибридам сельхозпроизводители должны отдавать предпочтение при внедрении их в производство в условиях Зауралья?

В связи с актуальностью проблемы на опытном поле Института агроэкологии в 2014—2017 гг. были проведены исследования в рамках государственного сортоиспытания (фрагмент схемы опыта представлен в таблице 1).

Полевые и лабораторные исследования проводились согласно принятым методикам (повторность опытов трехкратная с рендомизированным размещением вариантов; общая и учетная площадь де-

лянки — 10,0 м², агротехника — рекомендованная для региона) [12, 13, 14]. Метеорологические условия отличались разнообразием, что характерно для климата Зауралья: в 2014 году в начале вегетационного период температурный фон превышал средний многолетний и наблюдался дефицит осадков, с конца июня установилась прохладная и дождливая погода; в 2015 году температурный фон был близок к среднему многолетнему, но сумма осадков за период вегетации превысила среднюю многолетнюю (в мае и в июле); 2016 год характеризовался умеренным температурным фоном и острым дефицитом осадков; в 2017 году температура воздуха была ниже средних многолетних значений, при этом количество осадков в мае-июле превысило многолетние показатели.

Таблица 1 – Перечень гибридов различной селекции, изучаемых в 2014–2017 гг. (Института агроэкологии)

Гибрид	Производитель	Число ФАО	Группа скороспелости	
Pocc 130 MB	Краснодар. НИИСХ (РФ)	130	Ультраранние (130–150)	
Обский 140 СВ	НПО «КОС-Маис» (РФ)	140		
Кубанский 141 МВ	НПО «КОС-Маис» (РФ)	140		
Уральский 150	ВНИИ кукурузы (РФ)	150		
Нур	ВНИИ кукурузы (РФ)	150		
Машук 150МВ	ВНИИ кукурузы (РФ)	150		
Машук 170 МВ	ВНИИ кукурузы (РФ)	170		
Машук 171	ВНИИ кукурузы (РФ)	170	D	
Катерина СВ	ВНИИ кукурузы (РФ)	170	Раннеспелые (160–180)	
Инберроу	Euralis (Франция)	160		
Вулкан	Euralis (Франция)	170		
Дельфин	Euralis (Франция)	190	Среднеранние (190–210)	
НК Фалькон	Syngenta (Швейцария)	190		
НК Гитаго	Syngenta (Швейцария)	200		
Делитоп	Syngenta (Швейцария)	210		
СИ Респект	Syngenta (Швейцария)	230	Среднеспелые (220–300)	

При районировании и внедрении в производство гибридов кукурузы важным критерием является их подбор по признаку скороспелости. По заявленным производителями числам ФАО была проведена группировка гибридов по классам скороспелости в соответствии

с зональной классификацией, предложенной А.Э. Панфиловым [1, 3, 15, 16]. Исследования показали, что отечественные образцы представлены ультраранними и раннеспелыми гибридами, а зарубежные – раннеспелыми, среднеранними и среднеспелыми формами.

Развитие селекции на скороспелость создает условия для более полной адаптации кукурузы в Зауралье, а детальная классификация гибридов по скороспелости дает возможность более объективно рекомендовать их по направлениям хозяйственного использования в регионе: ультраранние — на силос и зерно, раннеспелые — на силос, среднеранние и среднеспелые — ограниченно на силос.

Таким образом, гибриды отечественной селекции имеют преимущества по скороспелости перед зарубежными, и именно они являются перспективными для возделывания в условиях Зауралья, поскольку дают возможность получать не только силос, но и спелое зерно.

Эффективность возделывания кукурузы оценивают не только по скороспелости гибридов, но и по их продуктивности, что крайне актуально в условиях большого спроса свиноводства и птицеводства в регионе на корма из кукурузы [2, 3, 17, 18, 19]. Высокая урожайность зерна изучаемых гибридов (в среднем 7,58 т/га при варьировании показателя от 5,96 т/га до 9, 55 т/га) была отмечена в 2015-м и 2016 годах на фоне умеренных температур воздуха в период вегетации (рис. 1). Снижение урожайности в 2014-м и 2017 годах было напрямую связано с прохладной и дождливой погодой.

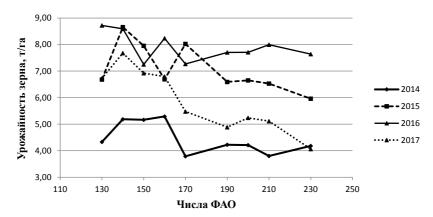


Рис. 1. Урожайность зерна (т/га) различных по скороспелости гибридов кукурузы (Институт агроэкологии, 2014—2017 гг.)

Исследования позволили выявить высокопродуктивные отечественные гибриды ультрараннего (Обский 140 СВ, Кубанский 141 СВ, Машук 150 МВ, Нур) и раннеспелого классов (Катерина СВ, Машук 170 МВ, Машук 171) (в среднем за период исследований урожайности зерна составила 6,83 т/га), обеспечивающие также стабильное снижение уборочной влажности зерна до 27% в годы с высокой теплообеспеченностью и до 35% — при дефиците тепла (табл. 2).

Таблица 2 — Уборочная влажность зерна гибридов различной селекции, 2014—2017 гг. (Института агроэкологии)

Fy/6avv	Влажность зерна, %			
Гибрид	2014 г.	2015 г.	2016 г.	2017 г.
Pocc 130 MB	40,32	35,45	27,92	34,60
Обский 140 СВ	38,40	34,83	28,78	36,70
Кубанский 141 МВ	37,29	36,17	27,98	37,20
Уральский 150	35,30	36,03	28,43	36,50
Нур	41,43	35,32	27,90	36,20
Машук 150МВ	34,50	33,07	29,46	38,40
Машук 170 МВ	45,15	36,16	31,20	42,20
Машук 171	43,53	39,52	34,10	43,90
Катерина СВ	41,38	34,30	30,80	43,60
Инберроу	49,20	43,60	31,89	39,50
Вулкан	58,10	45,80	34,10	47,60
Дельфин	57,60	45,00	32,80	47,30
НК Фалькон	52,30	41,90	29,62	57,10
НК Гитаго	54,30	42,10	26,34	52,10
Делитоп	58,50	43,80	29,91	53,70
СИ Респект	56,60	47,60	38,90	60,20

Зарубежные гибриды существенно уступали отечественным образцам как по зерновой продуктивности, так и по уборочной влажности зерна (в годы исследований в среднем урожайность составила $5.85 \, \text{т/га}$, а уборочная влажность $-45.6 \, \%$). Являясь более позднеспелыми, они обладают потенциально высокой продуктивностью, но в условиях ограниченной теплообеспеченности не могут в полной мере реализовать свой генетический потенциал, поэтому они дают урожай зерна с высокой уборочной влажностью, которая исключает

его механизированную уборку [3, 20, 21] и дает возможность возделывать эти гибриды в регионе только на силос.

Полученные в ходе исследований результаты позволяют рекомендовать сельскохозяйственным производителям региона гибриды кукурузы отечественной селекции ультрараннего и раннеспелого классов, характеризующиеся высокой скороспелостью и урожайностью, низкой уборочной влажностью и доступными ценами на семенной материал (соотношение цен на семена отечественных и зарубежных гибридов составляет примерно 1:6), что особенно актуально в условиях импортозамещения.

Список литературы

- 1. Панфилов А. Э. Кукуруза в Южном Зауралье : монография. Челябинск : ЧГАУ, 2004. 356 с.
- 2. Панфилов А. Э. Проблемы и перспективы выращивания кукурузы на зерно в Зауралье // Вестник ЧГАА. 2012. Т. 61. С. 115–119.
- 3. Кукуруза на Урале : монография / Н. Н. Зезин [и др.]. Екатеринбург, 2017. 204 с.
- 4. Сотченко В. С. Роль Всероссийского НИИ кукурузы в решении задач производства зерна // Кукуруза и сорго. 2013. № 4. С. 3–6.
- 5. Панфилов А. Э. Кукуруза в регионах России: селекция и технология возделывания // АПК России. 2016. Т. 23. № 3. С. 657–658.
- 6. Логинова А. М., Губин С. В. Изучение новых инбредных линий кукурузы омской селекции // Кукуруза и сорго. 2012. № 3. С. 15–17.
- 7. Кукуруза в Сибири. Успехи селекции / В. С. Ильин, А. М. Логинова, С. В. Губин, Г. В. Гетц // АПК России. 2016. Т. 23. № 3. С. 664–668.
- 8. Кукуруза в Сибири / Н. И. Кашеваров [и др.]. Новосибирск. 2004. 398 с.
- 9. Черепанов А. В. Гибриды кукурузы иностранной селекции, рекомендованные к возделыванию в Российской Федерации // Кукуруза и сорго. 2013. № 1. С. 33–35.
- 10. Новые сорта и гибриды кукурузы и сорговых культур, рекомендованные к возделыванию в хозяйствах Российской Федерации с 2015 года / Е. Я. Фильчугина [и др.] // Кукуруза и сорго. 2015. № 3. С. 20–29.

- 11. Новые сорта и гибриды кукурузы и сорговых культур, рекомендованные к возделыванию в хозяйствах Российской Федерации с 2017 года / Е. Я. Фильчугина [и др.] // Кукуруза и сорго. 2017. № 3. С. 29–35.
- 12. Методические указания по проведению полевых опытов с кукурузой / ВНИИ кукурузы. Днепропетровск, 1980. 56 с.
- 13. Методические указания по проведению полевых опытов с кормовыми культурами / ВНИИ кормов им. В. Р. Вильямса. М., 1987, 197 с.
- 14. Роговский Ю. А., Ролев В. С. О методике государственного сортоиспытания // Кукуруза и сорго. 1991. № 3. С. 36–40.
- 15. Панфилов А. Э. Классификация гибридов кукурузы по скороспелости / /Челябинскому государственному агроинженерному университету 70 лет: матер. XL науч.-техн. конф. Челябинск: ЧГАУ, 2001. С. 388–389.
- 16. Панфилов А. Э. Агроэкологическое обоснование зональной классификации гибридов кукурузы по скороспелости // Известия Челябинского научного центра УРО РАН. 2004. № 4. С. 147–151.
- 17. Казакова Н. И. Оценка качества силоса в зависимости от скороспелости гибридов кукурузы и срока посева // Вестник ЧГАА. 2012. Т. 62. С. 92–95.
- 18. Казакова Н. И. Органогенез и продукционный процесс ультрараннего и раннеспелого гибридов кукурузы в связи со сроками посева в северной лесостепи Зауралья: дис. ... канд. с.-х. наук / Пермская государственная сельскохозяйственная академия им. Д. Н. Прянишникова. Челябинск, 2012. 164 с.
- 19. Захарова Е. А., Линиченко Д. С. Оценка текущего и стратегического эффекта в системе агропромышленной интеграции с участием предприятий кормопроизводства // Аграрный вестник Урала. 2016. № 1 (143). С. 82–86.
- 20. Иванова Е. С., Панфилов А. Э. Динамика влажности зерна кукурузы как функция погодных условий // Кукуруза и сорго. 2013. № 3. С. 7–11.
- 21. Интенсивная технология возделывания кукурузы для производства высокоэнергетических кормов / А. Э. Панфилов, Е. С. Иванова, Н. И. Казакова, Е. С. Пестрикова // Научные проекты

Южно-Уральского государственного аграрного университета / под ред. М. Ф. Юдина. Челябинск, 2016. С. 87–89.

Иванова Евгения Сергеевна, канд. с.-х. наук, доцент кафедры экологии, агрохимии и защиты растений, ФГБОУ ВО Южно-Уральский ГАУ, Институт агроэкологии – филиал.

E-mail: Ivanovageka-ru@yandex.ru.